

KIT – The Research University in the Helmholtz Association

Steffen G. Scholz

KIT - The Research University in the Helmholtz Association

www.kit.edu

Figures and Facts

18 Spinoffs and startups

5 Campuses - 200 haarea

471 Trainees

355 Professors and executive scientists

300 Buildings with a usable area of 430,000 m²

25,000 Students

59 Patent applications

3,000 Doctoral students

9,300 Employees

1,000 International scientists

KIT budget EUR 860 million

Status: 2015

27/07/2017

Dr. Steffen G. Scholz

KIT - "established 2010"

Campus North: Forschungszentrum Karlsruhe

Campus South: Former University of Karlsruhe

27/07/2017

Dr. Steffen G. Scholz

Big Research Infrastructures at KIT

Acoustic Four-wheel Roller Dynamometer

European Zebrafish Resource Center

Karlsruhe Tritium Neutrino Experiment

ANKA Synchrotron Radiation Facility

High-perfomance Computer for Research

Theodor Rehbock River Engineering Laboratory

Biomass to Liquid (biolig®)

Grid Computing Centre Karlsruhe (GridKa)

Vehicle Efficiency Laboratory

EnergyLab 2.0

Karlsruhe Nano Micro Facility (KNMF)

AIDA Cloud Chamber

27/07/2017 Dr. Steffen G. Scholz

Institute for Applied Computer Science

27/07/2017

Dr. Steffen G. Scholz

AM Technologies – Selective Laser Melting/ Sintering

- Thin layers of fine (metal) powder are distributed on a indexing table that is movable in the vertical (z-) axis
- Resulting powder layer is molten or sintered by a high power laser beam

- Advantages: High density, wide range of metals applicable
- Drawbacks: Slow process, surface finishes are limited
- Possible Materials: Stainless steels, tool steels, titanium, nickel based alloys, ceramics

8 27.07.2017

Dr.-Ing- Steffen Scholz

on

AM Technologies – Fused Filament Fabrication

- Material filament ist unwound from a coil or continuously fed from strains
- Deposition of individual layers by feeding material through heated nozzle

- Advantages: Cheap, huge variety of machines available, compact size
- Drawbacks: Ribbing (visible layers), low part strength, delamination problems
- Possible Materials: ABS, PLA, PC, PPSF, PEI, materials with fillers (wood, copper)

Karlsruhe Institute of Technology

AM Technologies – Stereolithography (SLA)

- Photocurable polymer, typically liquid resin
- Layer by layer hardening by applying focussed light or UV light

- Advantages: High resolution, smooth surfaces, high mechanical strength
- Drawbacks: Limited material range, high printing costs compared to FFF
- Possible Materials: Epoxy based photopolymers

Karlsruhe Institute of Technology

AM Technologies – Inkjet / Multijet printing

- Similar to classic inkjet printing small droplets are dispensed by a single or multiple printheads
- Printed layer are either cured (photopolymers) or cooled (wax)

- Advantages: Very accurate, smooth surface, Quick print time (Multijet)
- Drawbacks: Separate process for melting supports, slow (Inkjet)
- Possible Materials: ABS, PA, TPE, resins

AM Technologies – Comparison

Process	Min. Resolution z- axis [µm]	Min. Resolution xy-axis [μm]	Build Platform [mm]
Fused filament fabrication (FFF)	20	> 250 (depending on nozzle size)	Up to 914 x 610 x 914
Selective laser sintering/melting (SLS/SLSM)	50	200-300	Up to 800 x 400 x 500
Stereolithography (SLA)	20	150	Up to 2100 x 700 x 800
Inkjet/Multijet printing	16	100-200	Up to 1000 x 800 x 500

27.07.2017 Dr.-

Dr.-Ing- Steffen Scholz

Market status - Sectors

Sectors

- Industrial/Business machines
- Consumer products/Electronics
- Motor vehicles
- Aerospace
- Medical/Dental
- Academic institutions
- Government/Military
- Architectural
- Other

Source: Wohlers Associates, Inc.

13 27.07.2017

Dr.-Ing- Steffen Scholz

Market status – Materials & Technologies

- Selective Laser Sintering
- Fused Filament Fabrication
- Stereolithography
- Multijet/Polyjet
- Digital Light Processing
- Direct Metal Laser Sintering
- Selective Deposition Lamination
- Binder Jetting
- Others

27.07.2017 Dr.-Ing- Steffen Scholz

Market status - Past and future

- Average annual growth over past 26 years: 27.3%, over last 5 years: 33,8%
- Current worldwide revenue: 4.103 billion US \$, being split between AM products (1.997 Billion) and AM services (2.105 billion)

27.07.2017 Dr.-Ing- Steffen Scholz

Institute for Applied Computer Science

15

Market status - Priorities for users in 2016

Dr.-Ing- Steffen Scholz

Applications – Multi-Material Printing

Creation of parts with functionally graded materials:

Image Courtesy of Kiril Vidimce

- Hardness
- Flexibility
- Adhesive properties
- Stiffness
- Color

Image Courtesy of Synthesis Design + Architecture

- Possible Applications:
 - Compliant joints
 - Artistic sculptures
 - **Heat Dissipation**

Images Courtesy of Massachusetts Institute of Technology

Image Courtesy of Stratasys Inc.

Dr.-Ing- Steffen Scholz

Institute for Applied Computer Science

27.07.2017 17

Industry 4.0 an overview

KIT - The Research University in the Helmholtz Association

www.kit.edu

Industrie 4.0 The Mission

Fourth Industrial Revolution

20

The domains of the IoT

Source: Bosch Institute for Applied Computer Science

The Internet of Thing

22

Source: Siemens

Karlsruhe institute of Technolog

The Human in the Centre...

23

Karlsruhe institute of Technology

Industry: the biggest market for the IoT

Source: McKinsey

Embedded System enabling CPS and CPPS

26

Opportunities and Challenges

27

Changes in the way of working

Source: ITQ Institute for Applied Computer Science

Changes in the way of working

29

R&D – Project Examples

- Multijet printing of novel materials
 - Material development
 - Process development
 - Nano-Safety Management

Dr.-Ing- Steffen Scholz

27.07.2017

R&D – Project Examples

Pneumatic tubes

Angular movement

Rigid material

Elastic material

Material development

- Ceramic enhanced material
- Lightweight polymer material
- High strength polymer material
- Electrically conductive material

Arm structure n

DIGITAL MATERIALS FOR 3D PRINTING

Dr.-Ing- Steffen Scholz 27.07.2017

Institute for Applied Computer Science

AIR

30 mm

Additive Manufacturing

Example: Robotic Arm

Mechanical requirements:

Hinge: max. tensile modulus and tensile strength (ceramics)

Bellow: elastic folds in combination of high strength polymeric materials

Arm structure: high strength polymeric material (shell structure) in combination of lightweight polymeric materials (hard foams) (max density 20Kg/m³)

- Thermal requirements: min. 115°C
- Electrical properties: max. 10μΩ/cm, 24V, low current

27.07.2017

R&D – Project Examples

Material development

- Ceramic enhanced material
- Lightweight polymer material
- High strength polymer material
- Electrically conductive material

Process development

Dr.-Ing- Steffen Scholz

Dr.-Ing- Steffen Scholz

Nano Safety

- Nano materials in science and consumer environment
 - Database for public information
 - Collection of relevant scientific findings
- Ink development for additive manufacturing
 - Workplace and consumer safety
 - Assessment of production & daily use risks

27/07/2017

Dr. Steffen G. Scholz

Additive Manufacturing

Conductive ink

Classic:

Screen Printing and Photolithography

3D Printing:

- No material yet available
- -> Polymer with silver nanoparticle
- -> concurrent properties:
 - Low Viscosity
 - Low resistivity (High metal content)
 - Surface tension
 - Small non agglomerate particles

Parameter	Requirement	Description
Solids %	≤50% w/w (as starting points)	
Particle size	D(50) = 75-90 nm d(90) = 95-130 nm	
Viscosity	12-20cP at printing temperature (<60°C)	It is not recommended to heat PVN inks above 60°C
Surface tension	25-35 dyn/cm	
Stability test at room temperature (1 month) (Shelf life test)	Viscosity change ≤5% Particle size change ≤5%	Re-dispersible by mild shaking
Stability test at 60°C (8, 24 hours) (Stability during printing time)	Viscosity change ≤5% Particle size change ≤5%	
Accelerated sedimentation rate	<0.38 µm/sec @T=10% transmission	Tested with Lumisizer centrifuge
Jetting test	Jetting latency > 10min	

Additive Manufacturing

Example: Luminaire PCB design

Design concept (cross section)

Requirements towards inks:

- Optical
 - Use of Pigments (e.g. TiO₂) as dispersion in the ink-matrix for a high reflectance
- Electrical

baseplate

- At least 50% metal particles in the ink
- Thermal (expansion)
 - 10^{-4} to 10^{-5} : original aim = 10^{-6}
 - inks filled with AIN or TiN particles

37 27.07.2017

Additive Manufacturing

Example: Robotic Arm

Image Courtesy of FESTO

38 27.07.2017

Printed electronics

The use of conductive materials already allow the production of:

- Circuit (inclusive passive electronic elements)
- 3D antenna
- Sensors (Magnetic, force, resistance strain gauge)
- Batteries
- OLED-Displays/ lighting
- Etc.

Source: Neotech AMT

- Communication mobile
- Medical
- Consumer good

Source: Harvard University

Source: isorg

Source: Harvard University

Dr. Steffen G. Scholz

Printed electronics - Research

Through layer construction, objects could have embedded features such as:

- Circuit
- Sensors
- Display
- Etc.

Bildquelle: Berkeley University

Possible application:

- Game
- Lighting device
- Food monitors

Bildquelle: Disney Research

Bildquelle: Disney Research

40

Dr. Steffen G. Scholz

Additive Manufacturing FDM SLA -Scanner system Laser Laser beam Layers of solidified resin Liquid resin Platform and piston Inkjet SLM Writing Head Y axis X axis-Desmaler num -UV Light Built parts Fullcure M (Model Material) Build invelope Z axis Build platform Fullcure 5 (Support Material) **Build Tray** 41 27/07/2017 Dr. Steffen G. Scholz

Additive manufacturing

Processes & Materials for customized / small scale production

Improvement of existing manufacturing approaches

- Machine learning / DoE approaches
- Process optimization (machine parameters, path planning)
- Optimization based on multiple criteria (robustness, building speed, preciseness...)
- Application in different areas (i.e. additive manufacturing/laser machining)

Materials for different AM techniques

- Filled filaments for fused filament fabrication (or FDM™)
- Ceramic or metal enhanced inks for inkjet/multijet printing
- Characterization of materials (viscosity, thermal/electrical properties)

27/07/2017

Dr. Steffen G. Scholz

Additional functionality via 3D printing and hybrid process chains

2D Today - 3D Future

Chip Bonding

3D interconnects

Multilayer circuit

Conductive circuit

Sensors

Capacitors

Transistor circuit

Ref: Neotech

43

Dr. Steffen G. Scholz

Computer-to-Print & digital manufacturing from electrical hybrid circuits

Dr. Steffen G. Scholz

Institute for Applied Computer Science

44

Potential of printing technologies for 3D electronic component

Prototypes

Flexible production (Industry 4.0 concept)

Tailor made and customised production

Shorter time to market

- Flexible und easy to adapt design parameters during prototype development
- Time and cost advantage for mass customised product

Optimised product development

- Design optimisation (lighter and less waste)
 - → Cost saving and more environment friendly

More efficient supply chain

Stock reduction for electronic components

Wider application spectrum and new application

- Flexible and fine support (Smart Wearable Devices)
- 3D Printing

Diverse challenges for electronic printing

Resolution

The electronic properties are dependent on resolution

Producibility

- Geometry requirement
- Temperature influence (e.g. during sintering) for the fabrication of multimaterial components.
- Material requirements

Introduction of industry standards

First frameworks are being introduced

Environmental impact

- Recycling challenges for multi-material components
- Use of process gas

Health impact

Use of nanoparticles, organic solvent, dispersant and further additives

- Optimization of manufacturing parameters by
 - Machine learning / DoE approaches
 - Process modelling, choice of parameters
 - Optimization based on multiple criterias (robustness, tolerances...)

Statistical analysis of parameters

Interaction	P-value				
	${\it F^e}_{\it max}$	P ^c _{work}	P ⁱ work	P ^c _{max}	P ⁱ _{max}
$T_m V_i$	0.992	0.951	0.963	0.828	0.686
T _m P _h	0.888	0.995	0.871	0.872	0.964
$T_b V_i$	0.801	0.642	0.882	0.945	0.389
$T_b T_m$	0.785	0.446	0.935	0.121	0.651
$T_b P_h$	0.747	0.97	0.678	0.329	0.302
P_h, V_i	0.016	0.045	0.002	0.169	0.027
	$\begin{array}{c} T_m V_i \\ T_m P_h \\ T_b V_i \\ T_b T_m \\ T_b P_h \end{array}$	$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	$ \begin{array}{c ccccc} & F^e_{\textit{max}} & P^c_{\textit{work}} \\ \hline T_m V_i & 0.992 & 0.951 \\ \hline T_m P_h & 0.888 & 0.995 \\ \hline T_b V_i & 0.801 & 0.642 \\ \hline T_b T_m & 0.785 & 0.446 \\ \hline T_b P_h & 0.747 & 0.97 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Bothemfeld is

Characteristic numbers calculated from pressure curves

→ Current focus on micro-fabrication techniques and increasingly on additive manufacturing (multijet printing)

47 27/07/2017

Dr. Steffen G. Scholz

Orthopedic screw with enhanced cell adhesion capability

27/07/2017

Dr. Steffen G. Scholz

Institute for Applied Computer Science

48

Multi material dental bracket

Immersion time in artificial saliva at 60 °C:

7 days

21 days

30 days

49 27/07/2017

Metal insert

Dr. Steffen G. Scholz

Cantilever assembly for HiFi cartridges

Tubes with injected TPE rings in mould

Tubes with injected TPE rings and sprue

50 27/07/2017

Dr. Steffen G. Scholz

Housing for MEMS actuators

MEMS packaging

air tightness

51 27/07/2017

Dr. Steffen G. Scholz

Diplexer for high frequency communication

Conventional machinining

After metalization

Injection molded (Base)

With Lid

52 27/07/2017

Dr. Steffen G. Scholz

Flexible Manufacturing

Modularity concept

Scalable, simple, adaptable system

- Flexible layout of the modules
- Extensible module process

Autonomous, put together process module

- Work piece holder
- Transfer system

Variable Module size

Decentralised production

... produce complete micro systems in a "Star-trek"-like manner...

Design for **traditional** production processes

Design for **SmartLAM** production processes

Dr. Steffen G. Scholz

Modularity concept

- SMARTLAM 6 modules + control unit
 - Lamination
 - Laser welding
 - Laser structuring
 - Printing module (aerosoljet printing)
 - Assembly
 - Inspection
 - Centralised control
 - Supporting databank

Dr. Steffen G. Scholz

Institute for Applied Computer Science

54

Application 1 – LED lighting

- Light source embedded into surgical instrument
- Product includes 1. planar light-guide LED chip source, electronic control, switch and power source
- Sealed and to have high hermiticity for medical accreditation.
- Custom size and light specifications for different surgical procedures
- Specification will evolve over time
- Disposable
- Cost/volume critical e.g. Veterinary market

Source: DLED

Dr. Steffen G. Scholz

Flexible Manufacturing

Example of hybrid integration of a LED chip

Functional element:

- Integration of independent parts (Dies)
- Contacting via printing techniques (Via's)

source: Smartlam

Necessary working steps:

- Laser welding of the pockets
- Positioning and mounting of the dies
- Two strategies for contacting after the positioning of the foil.
 - Direct pressure on the filled cavities
 - Addition of top layer, that has been pre-drilled and subsequent filling with ink

Top level interconnect LED TOP/TOP Chip

Top level interconnect

LED TOP/TOP Chip

with optics on lower

Transparent polymer substrate with optics on lower surface

Dr. Steffen G. Scholz

Individual LED module process chain

Dr. Steffen G. Scholz

Flexible Manufacturing

Application 2 – Fluidic microchip

Approach

- The modular design approach consist of 2,5D parts, produced by "digital" manufacturing processes (e.g. Aerosol Jet Printing, Laser, add. Manufacturing)
- Introduction of a design environment for rule-based combination of features and partly automated production

Dr. Steffen G. Scholz

Application 2 – Fluidic microchip

- Fluidic-Chip with 3 polymer sheets:
 - cover with reservoir
 - sheet with channel design
 - base plate

3d channel structure with 6 polymer sheets

Dr. Steffen G. Scholz

Institute for Applied Computer Science

59

Modules implementation

60 Dr. Steffen G. Scholz

Aerosol Jet Module

INDUSTRY 4.0

Databases and Process selection tools

- Process database
 - Assessment & description of competences
 - Methods & concepts for describing dependencies
 - Data model from design to manufacturing stage

SMARTLAM PRODUCTION

PLATFORM

- Accessible from all over the world
- On- and inline modification of production
- Modularity for adaption of process to changing conditions

27/07/2017

Dr. Steffen G. Scholz

INDUSTRY 4.0

Databases and Process selection tools

62 27/07/2017

Dr. Steffen G. Scholz

DaNa2.0 - Short Overview

Key Tasks of the DaNa - Knowledge Base Nanomaterials (DaNa = Database Nanomaterials)

- Communication of current nanotechnology safety research
 - Scientific Literature Review & Quality Management
 - Collecting Evaluating & Processing of Nanosafety Information for Website
 - for Interested Laymen, Stakeholders, Scientists
- Umbrella project for German Nanosafety Research projects
 - NanoCare, NanoNature, ERA-Net SIINN

Dr. Steffen G. Scholz

DaNa2.0 – Key Facts

- Project duration: 2013 2019 (prev. project DaNa 2009 2013)
- Project Budget € 3.7 Mio
- Funding by German Ministry of Education & Research (BMBF), supported by Swiss authorities (FOEN, FOPH)
- Project Partners Expertise in Material Science, Human- & Eco-Toxicology
 - Core Team

External Experts

University Lipinipani

Website www.nanoobjects.info

- Up-To-Date Information on NanoSafety
 - 26 market-relevant Nanomaterials
 - Body barriers
 - Cross-cutting issues
 - Basics
 - SOPs
- Application-oriented information together with toxicological facts
- 4 levels of details from laymen to experts

- → more than 130.000 visitors in 2016
- → more than 1.000 quality-approved literature citations on the website

Website www.nanoobjects.info

> 130.000 visitors in 2016

Countries	Visitors [in %]		
1. Germany	52,9		
2. USA	8,3		
3. India	5,3		
4. Switzerland	4,6		
5. Austria	4,4		

Continents	Visitors [in %]		
1. Europe	73,5		
2. Asia	12,5		
3. Americas	10,3		
4. Oceania	1,3		
5. Africa	1,2		

Americas: North, Middle & South America

~ 1 % of all visitors from Brazil, mainly São Paulo, Rio de Janeiro & Florianópolis

Dr. Steffen G. Scholz

Literature Quality Management

- Evaluation of peer-reviewed literature with publicly available quality criteria
 - Topics Human- & Eco-Toxicology
 - Sorting of approved & rejected literature using the DaNa Literature Criteria Checklist
 - > 1.000 quality-approved literature citations on the website

Dr. Steffen G. Scholz

Research strategy:

- Process development in the area of additive manufacturing
- Hybrid process chains and smart, digital and flexible manufacturing
- I4.0 applications with particular focus on smart energy usage
- Risk and life cycle analysis

UNESP:

- Further cooperation
- Student exchange
- Collaborative projects in domain specific areas
- Teaching and training activities

The Future

70

Gatner Hype-Cycle

- In order to fully implement I4.0 all stakeholders (component suppliers, equipment manufacturers, factory operators, OEMs, users,...) should adopt it.
- Companies have to adapt (change business model) fast or may die.

71

Thanks a lot...

72